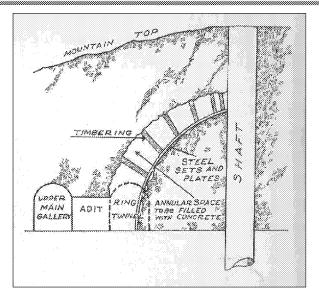
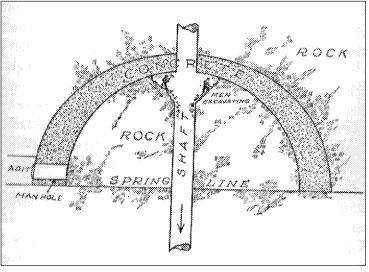
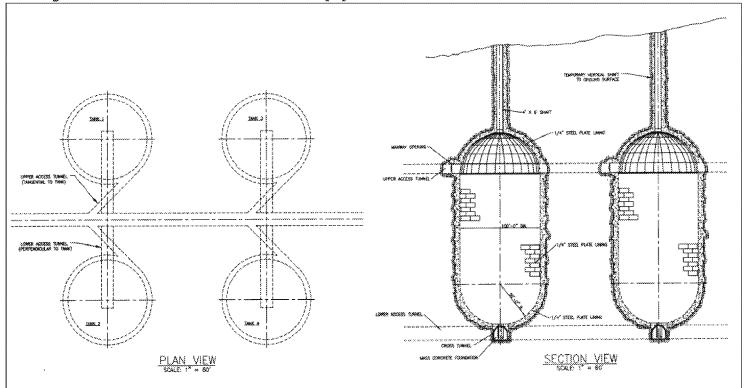
Previous Investigations: Outline



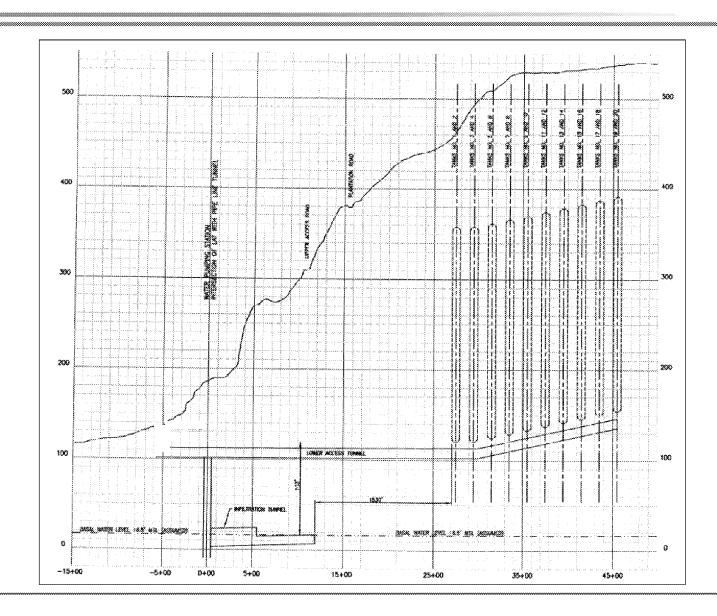

Construction of Tanks Stored Fuel Types **Historical Timeline Groundwater Monitoring** Well Network

Previous Investigations: Construction of Tanks

- Before the 1940's, all Navy fuel was stored in aboveground tanks
- For national security reasons, Red Hill fuel farm was installed a minimum of 100 ft underground to protect against aerial attacks
- 20 field constructed steel vertical underground storage tanks (USTs)
 - Inner tank liners constructed of welded steel plates
 - Exterior of steel liner filled with concrete



Previous Investigations: Construction of Tanks



- Each tank: 250 ft high x 100 ft diameter, 12.5 million gallons
- Tank tops: at least 100 ft underground
- Tank bottoms: approx. 100 ft or more above groundwater
- Layout: two rows with upper and lower service tunnels

Previous Investigations: Construction of Tanks

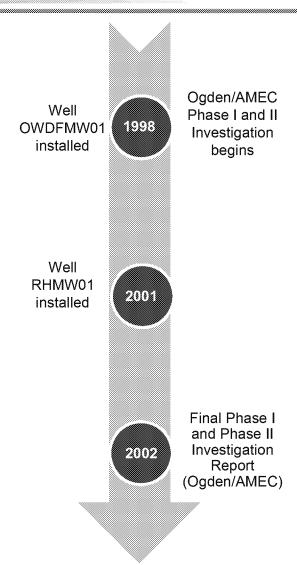
Previous Investigations: Fuel Types Stored

Fuel types:

- JP-5 (kerosene-type turbine fuel) Tank 7-12, 17-18, 20
- JP-8 (kerosene-type turbine fuel) Tanks 2-6
- F-76 (diesel marine fuel) Tanks 13-16

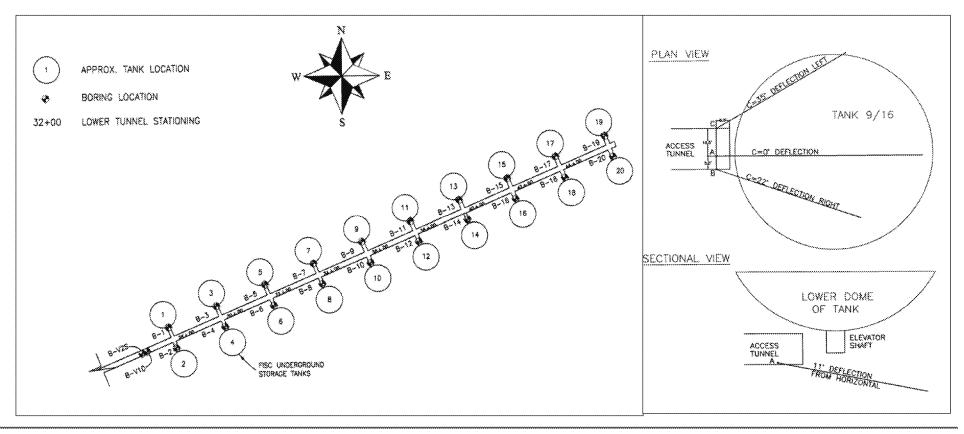
Tank Identification	Fuel Type	Status	Capacity
F-1	None	Inactive	12.5 million gallons
F-2	JP-8	Active	12.5 million gallons
F-3	JP-8	Active	12.5 million gallons
F-4	JP-8	Active	12.5 million gallons
F-5	JP-8	Active	12.5 million gallons
F-6	JP-8	Active	12.5 million gallons
F-7	JP-5	Active	12.5 million gallons
F-8	JP-5	Active	12.5 million gallons
F-9	JP-5	Active	12.5 million gallons
F-10	JP-5	Active	12.5 million gallons
F-11	JP-5	Active	12.5 million gallons
F-12	JP-5	Active	12.5 million gallons
F-13	F-76	Active	12.5 million gallons
F-14	F-76	Active	12.5 million gallons
F-15	F-76	Active	12.5 million gallons
F-16	F-76	Active	12.5 million gallons
F-17	JP-5	Active	12.5 million gallons
F-18	JP-5	Active	12.5 million gallons
F-19	None	Inactive	12.5 million gallons
F-20	JP-5	Active	12.5 million gallons

F-76 Marine Diesel Fuel


JP-5 Jet Fuel Propellant-5

JP-8 Jet Fuel Propellant-8

Previous Investigations: Results


- 1998-2002 Ogden/AMEC Investigation
 - Conducted to evaluate concerns related to historical releases
 - Included slant boreholes,
 installation of two monitoring
 wells
 - Recommended further analysis and risk assessment

Previous Investigations: Results

- 1998 Ogden/AMEC Investigation (continued)
 - Slant borehole drilled at angle beneath each UST (min. 5 ft below UST), terminated 80-90 ft above groundwater level

Previous Investigations: Results

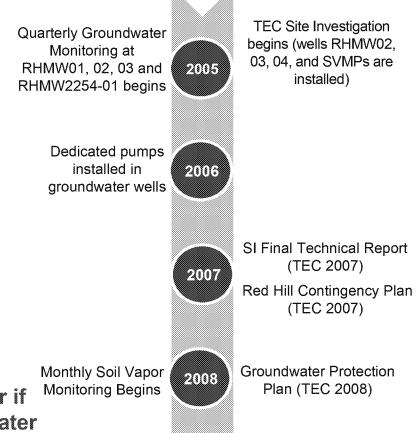
- 1998 Ogden/AMEC Investigation (continued)
 - Fluids in angled borings and one deep boring were sampled and submitted for fuel fingerprint analysis
 - Three types of fluids were present:
 - I NAPI mixed with drill water. (LNAPL)
 - LNAPL mixed with infiltration water (infiltration fluid)
 - One basal groundwater sample did not have product

Table 3-4 Summary of Fluid Levels Detected in Monitoring Wells

Monitoring Well ID	Fluid Media	Elevation at Ground Surface	Date	Depth to Fluid Level (ft, POE)	Corrected Elevation of Fluid Level
RH-MW-1	LNAPL	102.66	03/07/01	124.20	70.52
			08/24/01	129.40	69,17
RH-MW-13	LNAPL	121.95	03/07/01	NFD	NA
			08/24/01	132,50	87.66
RH-MW-14	LNAPI.	121.75	03/07/01	NFD	NA
			08/24/01	135,30	86.73
RH-MW-17	LNAPL	129.75	03/07/01	NFD	NA
			08/24/01	114.80	103.92
RH-MW-19	Infiltration Fluid	133.68	03/07/01	113.10	104.41
			08/24/01	110.52	108.81
RH-MW-VID	GW	102.56	03/07/01	86,10	I6.46
			08/24/01	86.28	16,28

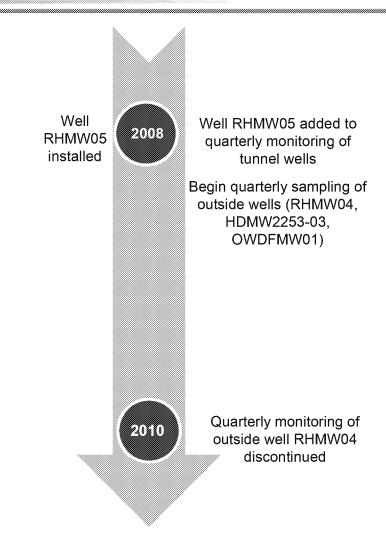
LNAPL - Light phase non aqueous phase liquid (which may be mixed with drill fluid)

ft, POE - feet from boring point of entry

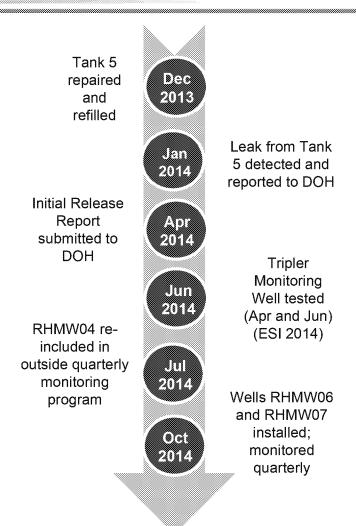

NA - Not applicable

NFD - No fluid detected

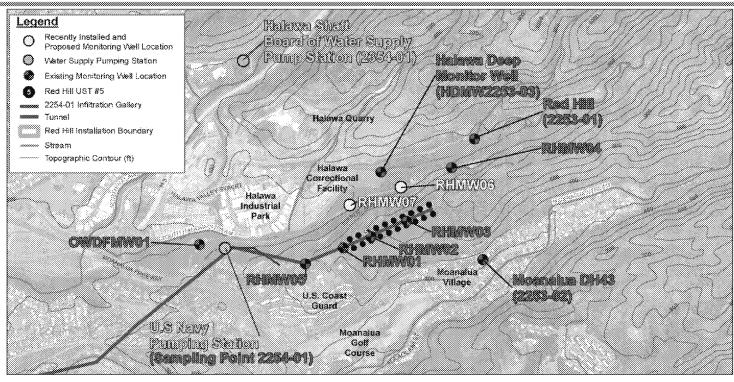
Previous Investigations Results


- 2007 Site Investigation (TEC 2007)
 - Installed RHMW02, RHMW03, & RHMW04
 - Installed nested SVMPs in 3 slant boreholes
 - Conducted regional pump test
 - Developed MODFLOW flow model
 - Developed RT3D F&T model
 - Concluded VI pathways insignificant due to low volatility of fuels, groundwater depth, and tunnel ventilation
- 2007, 2008 Contingency & Groundwater Protection Plans
 - Quarterly GWM program and recommended responses to contaminant levels and trends
 - SVM program
 - Maintenance schedule for USTs
 - Actions required to remediate the basal aquifer if a large release of fuel were to migrate to the water table

Previous Investigations Results


- 2009 2011 Activities
 Conducted under Groundwater
 Protection Plan and other DOH
 UST requirements
 - Install RHMW05 (based on modeling results)
 - Jan. 2008 July 2010 Monthly Monitoring:
 - Free product well gauging: No measurable LNAPL
 - PID Screening of SVMPs:
 General trend suggests residual contamination, not a chronic leak
 - Quarterly groundwater monitoring well sampling
 - Re-evaluation of groundwater flow model

January 2014 Release: Response, Investigations



- Dec. 2013 Jan. 2014: After repairs, tank 5 was filled with JP-8 fuel in a month-long filling process
- During tank filling, the tank flexed and the fuel level was constantly changing
- Once filled and fuel settled, a release was detected
- Jan. 13, 2014: DOH & NRC immediately notified
- Fuel immediately removed; Tank 5 emptied by Jan. 18, 2014
- April 2014 Initial Release Response Report
 - Recommended installation of more monitoring wells and further investigation

January 2014 Release: Current Monitoring Well Network

Well Number	RHMW01	RHMW02	RHMW03	RHMW04	RHMW05	RHMW06	RHMW07	RHMW 2254-01	HDMW 2253-03	OWDFMW 01
Description	Down- gradient of Tanks 1- 20	Down- gradient of Tanks 7 -20	Down- gradient of Tanks 15-20	Back ground	Sentinel Well	Installed after release (2014)	Installed after release (2014)	Supply water sampling point	BWS monitoring well	Oily Waste Disposal Facility (IR site)